SUPPORTING INFORMATION

Synthesis of Medium-Sized Cyclic Amines by Selective Ring Cleavage of Sulfonylated Bicyclic Amines

Fátima Iradier, Ramón Gómez Arrayás, Juan Carlos Carretero*

Departamento de Química Orgánica. Facultad de Ciencias. Universidad Autónoma de Madrid. 28049 Madrid. Spain.

juancarlos.carretero@uam.es

Experimental Section

Reagents obtained from commercial source were used without further purification. THF was distilled from Na/benzophenone and CH_2Cl_2 was distilled from P_2O_5 . All reactions were performed under inert Ar atmosphere. Column chromatography was carried out using Merck 60 230-400 mesh silica gel. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded at room temperature. Chemical shifts are reported in parts per million from the solvent resonance as the internal standard. The NOESY experiments of **5** and **6** were recorded on a 500 MHz spectrometer. Mass spectra (MS) were recorded using FAB technique. Mass data are reported in mass units (m/z) and values in brackets show the relative intensity from the base peak (as 100%). Compounds **1**, **2**, **3**, **10**, **12** and **14** were prepared as indicated in reference **5**.

Synthesis of aldehyde: 4-[N,N-Bis(tertthe starting butoxycarbonyl)]butyraldehyde. To a solution of commercially available 4aminobutyraldehyde diethyl acetal (10.0 g, 62.0 mmol) in CH₂Cl₂ (100 mL), cooled at 0°C, was added BOC₂O (15 mL, 65 mmol). The solution was allowed to reach rt and stirred for 30 min. The solvent was evaporated, and the residue was dissolved in THF (130 mL), cooled at 0°C, and treated with 2.5 M n-BuLi in hexane (26 mL, 65 mmol) for 15 min. Then, BOC₂O (15 mL, 65 mmol) was slowly added and the reaction mixture was kept at 0°C for 30 min. Saturated aqueous NH₄Cl was added, the organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was dissolved in a 2:1 mixture of AcOH/H₂O (150 mL) and stirred at rt for 6 h. The mixture was neutralized with saturated aqueous NaHCO₃ and extracted twice with CH₂Cl₂ (2 x 150 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated to afford 4-[N,N-Bis(tert-butoxycarbonyl)]butyraldehyde (16.0 g, 90%) as a colorless oil: 1H NMR (CDCl₃) δ 9.72 (m, 1H), 3.56 (t, J = 7.0 Hz, 2H), 2.41 (t, J = 7.0 Hz, 2 H), 1.84 (quint, J = 7.0 Hz, 2H), 1.45 (s, 18H); ¹³C NMR (CDCl₃) 201.0, 152.0, 152.3, 82.1, 45.1, 40.7, 27.8 (6C), 21.3.

General procedure for the reduction of esters 3 and 14. To a solution of the ester (1 mmol) in anhydrous THF (10 mL) at 0 °C, LiAlH₄ (1.1 mmol) was added. The reaction mixture was stirred for 30 min. Excess of LiAlH₄ was quenched by dropwise addition of saturated aqueous solution of potasium tartrate. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated to yield the desired alcohols.

(2S*, 3R*)-1-[2'-(Hydroxy)ethyl]-2-[(phenylsulfonyl)methyl]-3-[(triisopropylsilyl)oxy]pyrrolidine (*cis-4*). Following the general procedure, starting from

pyrrolidine *cis*-**3** (245 mg, 0.51 mmol), alcohol *cis*-**4** (206 mg, 92 %) was obtained as a colorless oil. 1 H NMR (CDCl₃) δ 1.01 (s, 21 H), 1.72 (dq, 1 H, J= 8.1, 12.9 Hz), 2.09 (m, 1 H), 2.42 (dt, 1 H, J= 8.1, 9.7 Hz), 2.60 (dt, 1 H, J= 3.6, 12.9 Hz), 2.92 (bs, 1 H), 2.97-3.10 (m, 2 H), 3.16 (dt, 1 H, J= 3.6, 9.7 Hz), 3.41 (dt, 1 H, J= 3.6, 6.9 Hz), 3.58-3.60 (m, 2 H), 3.68 (dd, 1 H, J= 3.6, 14.2 Hz), 4.48 (q, 1 H, J= 6.9 Hz), 7.54 (t, 2 H, J= 7.7 Hz), 7.63 (t, 1 H, J= 7.3 Hz), 7.90 (d, 2 H, J= 8.1 Hz). 13 C NMR (CDCl₃) δ 12.0, 17.8, 33.1, 49.6, 55.4, 57.1, 59.6, 62.1, 72.0, 127.5, 129.1, 133.4, 140.1. MS m/z 442.0 (M⁺+H, 100), 410.0 (53), 286.1 (12). Anal. Calcd for $C_{22}H_{39}NO_4SSi$: C, 59.82; H, 8.90; N, 3.17; S, 7.26. Found: C, 60.05; H, 9.10; N, 2.99; S, 7.58.

(2*R**, 3*R**)-1-[2'-(Hydroxy)ethyl]-2-[(phenylsulfonyl)methyl]-3-[(triisopropylsilyl)oxy]pyrrolidine (*trans*-4). Following the general procedure, starting from pyrrolidine *trans*-3 (904 mg, 1.87 mmol), alcohol *trans*-4 (800 mg, 97 %) was obtained as a colorless oil. ¹H NMR (CDCl₃) δ 1.05 (s, 21 H), 1.86-1.95 (m, 2 H), 2.66-2.77 (m, 2 H), 2.99-3.16 (m, 4 H), 3.22-3.26 (m, 1 H), 3.48-3.63 (m, 2 H), 4.46-4.48 (m, 1 H), 7.56 (t, 2 H, *J*= 6.9 Hz), 7.65 (t, 1 H, *J*= 7.3 Hz), 7.92 (d, 2 H, *J*= 6.9 Hz). ¹³C NMR (CDCl₃) δ 11.8, 17.8, 33.7, 51.0, 58.3, 59.5, 59.8, 68.7, 76.4, 127.5, 129.1, 133.4, 140.1. MS *m*/*z* 442.1 (M⁺+H, 100), 410.1 (50), 286.2 (14). Anal. Calcd for C₂₂H₃₉NO₄SSi: C, 59.82; H, 8.90; N, 3.17; S, 7.26. Found: C, 60.06; H, 9.27; N, 3.16; S, 7.56.

 $(2R^*, 3R^*)$ -2-[(Phenylsulfonyl)methyl]-3[(triisopropylsilyl)oxy]-1-[3'-(hydroxy)propyl]piperidine (15). Following the general procedure, starting from 14 (219 mg, 0.44 mmol), alcohol 15 (198 mg, 96 %) was obtained. ¹H NMR (CDCl₃) δ 1.09 (s, 21 H), 1.32-1.40 (m, 2 H), 1.52-1.79 (m, 3 H), 1.93 (tt, 1 H, J= 4.0, 12.5 Hz), 2.06 (dq, 1 H, J= 2.4, 12.1 Hz), 2.35 (ddd, 1 H, J= 3.2, 10.5, 12.5 Hz), 2.57 (dt, 1 H, J= 4.4, 12.5 Hz), 2.79 (dt, 1 H, J= 4.0, 11.7 Hz), 3.06 (dd, 1 H, J= 8.5, 14.5 Hz), 3.24 (dd, 1 H, J= 2.4, 14.5 Hz), 3.46 (dt, 1 H, J= 2.4, 8.5 Hz), 3.62-3.73 (m, 2 H), 4.12-4.15 (m, 1 H),

7.59 (t, 2 H, J= 7.3 Hz), 7.68 (t, 1 H, J= 7.3 Hz), 7.93 (d, 2 H, J= 6.9 Hz). ¹³C NMR (CDCl₃) δ 12.1, 18.0, 19.2, 26.7, 27.5, 45.4, 51.2, 55.1, 60.6, 64.2, 68.4, 127.8, 129.4, 133.8, 139.5. MS m/z 470.2 (M⁺+H, 100), 328.2 (55). Anal. Calcd for C₂₄H₄₃NO₄SSi: C, 61.36; H, 9.23; N, 2.98; S, 6.83. Found: C, 61.49; H, 9.57; N, 2.93; S, 7.18.

General procedure for cyclization of alcohols 4 and 15. To a solution of the alcohol (1 mmol) in CH₂Cl₂ (10 mL) cooled to 0 °C, Et₃N (1.2 mmol) and MsCl (1.2 mmol) were added. The reaction mixture was stirred for 20 min and then quenched with saturated aqueous solution of NH₄Cl. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layers were dried over MgSO₄, filtered and concentrated at reduced pressure. The residue was dissolved in THF (10 mL), at 0 °C, and a solution of LHMDS 0.5 M in THF (1.3 mmol) was added. The mixture was stirred at 0 °C for 1.5 h and quenched with saturated aqueous solution of NH₄Cl. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography using the eluent indicated in each case.

(1*R**, 7*R**, 7a*S**)-1-(Phenylsulfonyl)-7-[(triisopropylsilyl)oxy]pyrrolizidine (5). Following the general procedure, starting from *cis*-4 (70 mg, 0.16 mmol), pyrrolizidine **5** (58 mg, 86 %) was obtained after column chromatography (AcOEt: Hex 5:1) as a colorless oil. 1 H NMR (CDCl₃) δ 1.03 (s, 21 H, TIPS), 1.61-1.74 (m, 1 H, H-6), 2.05-2.15 (m, 1 H, H-6'), 2.49 (dt, 1 H, J= 7.3, 9.3 Hz, H-5), 2.83 (dt, 1 H, J= 6.5, 12.9 Hz, H-3), 3.00-3.15 (m, 3 H, H-2, H-2', H-5'), 3.44 (dt, 1 H, J= 3.6, 6.5 Hz, H-7a), 3.50 (t, 1 H, J= 6.5 Hz, H-3'), 3.77 (dd, 1 H, J= 3.6, 14.5 Hz, H-1), 4.46 (q, 1 H, J= 6.9 Hz, H-7), 7.56 (t, 2 H, J= 7.3 Hz, Ph), 7.64 (t, 1 H, J= 7.3 Hz, Ph), 7.92 (d, 2 H, J= 6.9 Hz, Ph). 13 C NMR (CDCl₃) δ 12.2, 18.0, 33.6, 42.3, 50.0, 55.9, 56.4, 61.6, 72.1, 127.7, 129.2, 133.4, 140.6. MS m/z 424.0 (M*+H, 16.2), 55 (100). Anal. Calcd for

C₂₂H₃₇NO₃SSi: C, 62.37; H, 8.80; N, 3.31; S, 7.57. Found: C, 62.70; H, 8.90; N, 3.10; S, 7.93.

(1S*, 7R*, 7aR*)-1-(Phenylsulfonyl)-7-[(triisopropylsilyl)oxy]pyrrolizidine (6). Following the general procedure, from alcohol *trans*-4 (1.47 g, 3.33 mmol), pyrrolizidine 6 (985 mg, 70 %) was obtained after column chromatography (AcOEt) as a white solid. Mp 47-48 °C. ¹H NMR (CDCl₃) δ 1.06 (s, 21 H, TIPS), 1.75-1.90 (m, 2 H, H-6), 1.97 (dq, 1 H, J= 6.9, 14.1 Hz, H-2), 2.16 (dq, 1 H, J= 6.9, 14.1 Hz, H-2'), 2.54-2.63 (m, 2 H, H-3, H-5), 3.11-3.15 (m, 1 H, H-1), 3.18 (d, 1 H, J= 6.9 Hz, H-3'), 3.26 (ddd, 1 H, J= 6.5, 8.9, 15.0 Hz, H-5'), 3.71 (dd, 1 H, J= 2.0, 6.9 Hz, H-7a), 4.37 (quint, 1 H, J= 2.0 Hz, H-7), 7.56 (t, 2 H, J= 7.3 Hz, Ph), 7.66 (t, 1 H, J= 7.3 Hz, Ph), 7.92 (d, 2 H, J= 6.9 Hz, Ph). ¹³C NMR (CDCl₃) δ 12.2, 18.1, 28.0, 33.6, 52.8, 54.0, 67.4, 73.3, 77.7, 128.9, 129.2, 133.8, 138.0. MS m/z 424.0 (M⁺+H, 100), 282.0 (8). Anal. Calcd for C₂₂H₃₇NO₃SSi: C, 62.37; H, 8.80; N, 3.31; S, 7.57. Found: C, 62.23; H, 8.70; N, 3.07; S, 7.67.

(1*R**, 9*R**, 9a*R**)-1-(Phenylsulfonyl)-9-[(triisopropylsilyl)oxy]quinolizidine (16). Following the general procedure, from alcohol 15 (159 mg, 0.34 mmol) quinolizidine 16 (82 mg, 54 %) was obtained after flash chromatography (Hex: AcOEt 2:1) as a colorless oil. 1 H NMR (CDCl₃) δ 0.99 (s, 21 H), 1.41-1.76 (m, 5 H), 2.06-2.11 (m, 3 H), 2.58-2.63 (m, 1 H), 2.82-2.93 (m, 3 H), 3.32 (dd, 1 H, *J*= 2.4, 8.9 Hz), 3.66-3.68 (m, 1 H), 4.10 (dt, 1 H, *J*= 3.2, 8.9 Hz), 7.50 (t, 2 H, *J*= 6.9 Hz), 7.60 (t, 1 H, *J*= 7.3 Hz), 7.89 (d, 2 H, *J*= 7.3 Hz). 13 C NMR (CDCl₃) δ 12.7, 18.1, 19.8, 20.2, 20.6, 34.9, 47.1, 53.1, 57.9, 60.9, 63.6, 128.6, 128.8, 133.2, 139.2. MS m/z 452.1 (M⁺+H, 100), 310.2 (71), 136.1 (45). Anal. Calcd for $C_{24}H_{41}NO_{3}SSi$: C, 63.81; H, 9.15; N, 3.10; S, 7.10. Found: C, 63.94; H, 9.28; N, 3.10; S, 7.36.

(1S*, 7R*, 7aR*)-1-(Hydroxymethyl)-1-(phenylsulfonyl)-7-[(triisopropylsilyl)oxy]pyrrolizidine and $(1R^*, 7R^*, 7aR^*)-1-(hydroxymethyl)-1-(phenylsulfo$ nyl)-7-[(triisopropyl-silyl)oxy]pyrrolizidine (8). To a solution of pyrrolizidine 6 (80 mg, 0.19 mmol) in THF (2.0 mL) at 0 °C *n*-BuLi 2.0 M in hexane (0.28 mmol, 142 μL) was added. The solution was stirred for 15 min and then dry formaldehyde (generated from paraformaldehyde) was bubbled through the reaction mixture. After 2 h saturated aqueous solution of NH₄Cl was added. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layers were dried over MgSO₄, filtered and evaporated in vacuo. The residue was purified by column chromatography (AcOEt: acetone 50:1) to afford pyrrolizidines 8 as a colorless oil (5:1 mixture of epimers at C-1, 55 mg, 64 %). Spectroscopical data for the major isomer: ¹H NMR (CDCl₃) δ 1.01 (s, 21 H), 1.86 (dt, 1 H, J = 6.9, 12.5 Hz), 1.96-2.11 (m, 2 H), 2.41 (dt, 1 H, J = 6.9, 13.7 Hz), 2.64 (dq, 2 H, J=6.9, 10.5 Hz), 3.14 (dt, 1 H, J=6.9, 10.5 Hz), 3.25 (dt, 1 H, J=6.9, 10.5 Hz), 3.78 (d, 1 H, J= 4.4 Hz), 3.80 (d, 1 H, J= 12.9 Hz), 4.11 (d, 1 H, J= 12.9 Hz), 4.50 (q, 1 H, J= 5.7 Hz), 7.56 (t, 2 H, J= 7.3 Hz), 7.66 (t, 1 H, J= 7.3 Hz), 7.98 (d, 2 H, J= 7.3 Hz). ¹³C NMR (CDCl₃) δ 12.5, 18.0, 31.0, 35.4, 52.5, 52.9, 62.2, 73.1, 74.3, 75.4, 129.1, 130.5, 134.2, 135.5. MS m/z 454.2 1 (M⁺+H, 100), 312.2 (10), 112.1 (94). Anal. Calcd for C₂₃H₃₉NO₄SSi: C, 60.89; H, 8.66; N, 3.09; S, 7.07. Found: C, 60.72; H, 8.24; N, 2.93; S, 6.65.

General procedure for the ring cleavage reaction. To a solution of the corresponding bicyclic amine (1 mmol) in CH₂Cl₂ or CH₃CN (10 mL), the alkylating reagent [MeI (5 mmol), MeOTf (2 mmol) or BnBr (2 mmol)] was added. The reaction mixture was stirred at room temperature or at reflux (in the case of BnBr) for the time indicated in each case (until complete disappearance of the starting amine by tlc control). The solvent was evaporated *in vacuo* to give the crude ammonium salt. A

solution of this ammonium salt (1 mmol) in MeOH (10 mL) was added to a mixture of Na-Hg 6% (2.5 g/mmol of amine) and Na₂HPO₄ (14 mmol). The reaction mixture was stirred for the time indicated in each case. The reaction was quenched by addition of NaOH 1% and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography using the eluent indicated in each case.

(Z)-1-Methyl-4-[(triisopropylsilyl)oxy]-1-azacyclooct-5-ene (7).

Method A: Reaction of sulfone **5** (40 mg, 0.095 mmol) with MeI (0.48 mmol) in CH₂Cl₂ overnight afforded the ammonium salt. The reaction of this salt with Na-Hg for 6 h gave **7** (20 mg, 70 %) after column chromatography (AcOEt).

Method B: Reaction of sulfone 6 (50 mg, 0.12 mmol) with MeOTf (0.24 mmol) in CH₂Cl₂ for 4 h yielded the ammonium salt. The reaction of this salt with Na-Hg for 6 h gave 7 (25 mg, 71 %) after column chromatography (AcOEt).

¹H NMR (C₆D₆) δ 1.22 (s, 21 H), 1.48 (ddt, 1 H, J= 3.2, 10.5, 12.9 Hz), 1.81-1.89 (m, 1 H), 2.17-2.34 (m, 3 H), 2.28 (s, 3 H), 2.42-2.51 (m, 3 H), 5.01 (m, 1 H), 5.58 (ddt, 1 H, J= 1.6, 7.7, 10.9 Hz) 5.77 (ddd, 1 H, J= 1.6, 7.3, 10.9 Hz). ¹³C NMR (C₆D₆) δ 12.6, 18.3, 29.3, 39.4, 46.6, 53.8, 58.5, 69.5, 126.4, 136.9. MS m/z 298.3 (M⁺+H, 100), 124.1 (48). Anal. Calcd for C₁₇H₃₅NOSi: C, 68.62; H, 11.86; N, 4.71. Found: C, 68.93; H, 11.88; N, 4.67.

(*E*)-6-(Hydroxymethyl)-1-methyl-4-[(triisopropylsilyl)oxy]-1-azacyclooct-5-ene (9). Reaction of **8** (46 mg, 0.10 mmol) with MeI (0.50 mmol) overnight produced the ammonium salt. Treatment of this salt with Na-Hg for 6 h afforded **9** (22 mg, 67 %) after column chromatography (AcOEt:acetone 1:1). 1 H NMR (CDCl₃) δ 1.03 (s, 21 H), 1.35-1.55 (m, 2 H), 1.95-2.18 (m, 2 H), 2.40 (s, 3 H), 2.45-2.73 (m, 4 H), 3.84 (d, 1 H,

J= 11.8 Hz), 3.92 (d, 1 H, J= 12.4 Hz), 4.46 (m, 1 H), 5.30 (m, 1 H). ¹³C NMR (CDCl₃) δ 12.2, 18.0, 28.1, 39.0, 46.1, 52.8, 58.0, 69.3, 72.3, 125.9, 136.8.

(*Z*)-1-Benzyl-8-methylen-4-[(triisopropylsilyl)oxy]-1-azacyclonon-5-ene (11). Reaction of 10 (60 mg, 0.13 mmol) with benzyl bromide (0.26 mmol) in CH₃CN at reflux for 6 h afforded the ammonium salt. The reaction of this salt with Na-Hg for 5 h gave 11 (40 mg, 75 %) after column chromatography (Hex:AcOEt 1:10). ¹H NMR (CDCl₃) δ 1.07 (s, 21 H), 2.08 (tt, 2 H, J= 4.0, 12.9 Hz), 2.30 (dq, 1 H, J= 2.4, 13.3 Hz), 2.52 (dt, 2 H, J= 4.0, 13.3 Hz), 2.76 (d, 1 H, J= 13.7 Hz), 3.04 (t, 1 H, J= 11.3 Hz), 3.14 (d, 1 H, J= 13.7 Hz), 3.28 (d, 1 H, J= 13.3 Hz), 3.90 (d, 1 H, J= 13.3 Hz), 4.80 (d, 1 H, J= 1.6 Hz), 4.88 (d, 1 H, J= 1.2 Hz), 5.22-5.33 (m, 2 H), 5.53 (q, 1 H, J= 10.1 Hz). ¹³C NMR (CDCl₃) δ 12.4, 18.1, 30.7, 34.6, 49.0, 59.2, 60.5, 68.3, 112.5, 126.9, 128.2, 128.8, 133.6, 139.7, 147.9. MS m/z 400.3 (M⁺+H, 44), 226.2 (22.2), 91.0 (100). Anal. Calcd for C₂₅H₄₁NOSi: C, 75.13; H, 10.34; N, 3.50. Found: C, 75.31; H, 10.45; N, 3.48.

 $(3R^*, 7R^*)$ -(Z)-1-Methyl-7-[(triisopropylsilyl)oxy]-1-azacyclonon-5-en-3-ol [(Z)-13] and $(3R^*, 7R^*)$ -(E)-1-methyl-7-[(triisopropylsilyl)oxy]-1-azacyclonon-5-en-3-ol [(E)-13]. Reaction of 12 (100 mg, 0.22 mmol) with MeI (1.1 mmol) in CH₂Cl₂ overnight afforded the ammonium salt. This salt reacted with Na-Hg for 5 h to yield (Z)-13 (14 mg, 44 %) and (E)-13 (12 mg, 38 %) after column chromatography (Hex:AcOEt 1:5).

(*Z*)-13: ¹H NMR (CDCl₃) δ 1.06 (s, 21 H), 1.78-1.94 (m, 2 H), 2.11-2.18 (m, 1 H), 2.23-2.24 (m, 1 H), 2.28 (s, 3 H), 2.42 (d, 1 H, J= 10.9 Hz), 2.48-2.68 (m, 2 H), 2.79 (dt, 1 H, J= 2.8, 10.5 Hz), 3.96 (m, 1 H), 4.88 (t, 1 H, J= 8.1 Hz), 5.39 (dt, 1 H, J= 6.1, 10.9 Hz), 5.71 (dd, 1 H, J= 8.1, 10.9 Hz). ¹³C NMR (CDCl₃) δ 12.2, 18.0, 32.2, 37.4, 43.6, 55.8, 58.0, 67.3, 68.8, 120.1, 140.2. MS m/z 328.3 (M⁺+H, 31), 154.1 (49), 58.0 (100). Anal.

Calcd for C₁₈H₃₇NO₂Si: C, 66.00; H, 11.38; N, 4.28. Found: C, 66.28; H, 11.57; N, 4.68.

(*E*)-13: ¹H NMR (CDCl₃) δ 1.06 (s, 21 H), 1.47 (dt, 1 H, J= 10.1, 13.3 Hz), 1.82 (dt, 1 H, J= 5.2, 13.3 Hz), 2.13-2.22 (m, 2 H), 2.30 (s, 3 H), 2.42 (dd, 1 H, J= 9.7, 14.1 Hz), 2.57-2.64 (m, 2 H), 2.71 (dd, 1 H, J= 6.5, 14.1 Hz), 3.67-3.72 (m, 1 H), 4.18 (dt, 1 H, J= 5.7, 8.5 Hz), 5.35 (td, 1 H, J= 7.7, 16.2 Hz), 5.71 (dd, 1 H, J= 8.5, 16.6 Hz). ¹³C NMR (CDCl₃) δ 12.2, 18.0, 37.2, 38.6, 46.4, 57.0, 62.2, 65.7, 76.4, 121.0, 136.7. MS m/z 328.3 (M⁺+H, 100), 154.1 (12). Anal. Calcd for C₁₈H₃₇NO₂Si: C, 66.00; H, 11.38; N, 4.28. Found: C, 66.04; H, 11.17; N, 4.46.

(*E*)-1-Methyl-5-[(triisopropylsilyl)oxy]-1-azacyclodec-6-ene (17). Reaction of 16 (70 mg, 0.16 mmol) with MeOTf (0.32 mmol) overnight gave the ammonium salt. Treatment of this salt with Na-Hg for 8 h afforded 17 (32 mg, 64 %) after flash chromatography (AcOEt). ¹H NMR (CDCl₃) δ 0.98 (s, 21 H), 1.24-1.38 (m, 2 H), 1.62-1.89 (m, 5 H), 1.96-2.08 (m, 1 H), 2.10 (s, 3 H), 2.28 (dd, 2 H, *J*= 2.7, 8.1 Hz), 2.42-2.68 (m, 2 H), 4.22-4.30 (m, 1 H), 5.40 (dd, 1 H, *J*= 8.1, 15.8 Hz), 5.58-5.71 (m, 1 H). ¹³C NMR (CDCl₃) δ 12.2, 18.0, 26.0. 29.2, 31.7, 33.6, 40.8, 51.9, 53.7, 72.2, 115.4, 140.1.